Twin Tower Desiccant Air Dryers

Cycling Refrigerated Compressed Air Dryer

Refrigerated High-Temperature Air Dryer

Modular Desiccant Air Dryers

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Leader in Adsorption Technology</td>
<td>P5</td>
</tr>
<tr>
<td>Twin Towers</td>
<td>P7</td>
</tr>
<tr>
<td>Cycling Refrigerated Air Dryers</td>
<td>P21</td>
</tr>
<tr>
<td>Modular Desiccant Air Dryers</td>
<td>P33</td>
</tr>
</tbody>
</table>
With over 50 years of experience in adsorption technology, Xebec has supplied more than 9,000 adsorption systems to more than 1,500 customers around the world, for a wide variety of industrial applications to the manufacturing, food processing, medical & pharma, and petrochemical industries.

Industrial Compressed Air and Gas Treatments are at the Core of Xebec's Adsorption Technology.

AT XEBEC, WE DESIGN, ENGINEER, MANUFACTURE AND SERVICE INDUSTRIAL EQUIPMENT for compressed air dedicated to a wide variety of industrial applications around the world.

Xebec is committed to responsible and sustainable environmental solutions
Xebec’s twin towers represent the best of modern engineering technology, maximizing user return on investment with built-in reliability at the lowest running cost.
TWIN TOWERS PRODUCT LINE

Heatless Air Dryer
HLA
Pressure Swing Adsorption (PSA)

Heat Regenerative Air Dryer
HRA
Temperature Swing Adsorption (TSA)

Blower Purge Air Dryer
BPA
TSA Heating with Ambient Air

Vacuum Regenerated Air Dryer
VRA
TSA Heating and Cooling with Ambient Air

Lowest Capital Cost
15% Purge

Greatest Energy Savings!

Lowest Life Cycle Cost
0% Purge
Lowest Carbon Footprint
Greatest Energy Savings

8% Purge

3% Purge
TWIN TOWERS
HEATLESS AIR DRYER - HLA

Advantages:

✓ The most affordable dryer in the line
✓ The lowest electrical consumption
✓ Simply designed for easy maintenance

Principle of Operation

Dual-tower desiccant dryers for the continuous dynamic adsorption of water vapor from compressed air. Using pressure swing adsorption technology (PSA), air gets dried under pressure by passing through one desiccant bed while the other bed is being regenerated.

Regeneration

Regeneration of the wet desiccant is accomplished without the use of heat. A small portion of the dried process air, called purge, is passed through the wet desiccant bed at near atmospheric pressure. This super-dry air strips the desiccant of all previously adsorbed water vapor.

Features & Benefits

Fully assembled, packaged unit comes complete with desiccant.
✓ Ready for operation
✓ Regeneration purge flow is counter-current to the direction of air flow during drying.
✓ Maximum removal of moisture and lowest dew point assured during the adsorption process
✓ Fail-safe design
✓ Controlled repressurization

Compressed air continues to flow through during power and/or pilot failure.

Temperature Correction

<table>
<thead>
<tr>
<th>Temperature Correction</th>
<th>Pressure Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Pressure</td>
<td>PSIG</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>70</td>
</tr>
<tr>
<td>Multiply Flow By</td>
<td>1.10</td>
</tr>
</tbody>
</table>

* m3/hr at 20 °C and 1 bar (a)

Tables, dimensions and weights are for reference only.

Model Pipe Size

<table>
<thead>
<tr>
<th>Model</th>
<th>Flow Rate at 7 Bar and 38°C</th>
<th>Dimensions</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA 2</td>
<td>1” 15</td>
<td>26</td>
<td>1016</td>
</tr>
<tr>
<td>HLA 5</td>
<td>1” 40</td>
<td>69</td>
<td>1505</td>
</tr>
<tr>
<td>HLA 8</td>
<td>1” 55</td>
<td>95</td>
<td>1621</td>
</tr>
<tr>
<td>HLA 12</td>
<td>1” 90</td>
<td>155</td>
<td>1716</td>
</tr>
<tr>
<td>HLA 17</td>
<td>1” 135</td>
<td>235</td>
<td>2122</td>
</tr>
<tr>
<td>HLA 22</td>
<td>1” 175</td>
<td>300</td>
<td>1800</td>
</tr>
<tr>
<td>HLA 30</td>
<td>1” 210</td>
<td>360</td>
<td>2051</td>
</tr>
<tr>
<td>HLA 40</td>
<td>1 ½” 290</td>
<td>500</td>
<td>1765</td>
</tr>
<tr>
<td>HLA 50</td>
<td>1 ½” 355</td>
<td>610</td>
<td>2045</td>
</tr>
<tr>
<td>HLA 65</td>
<td>2” 535</td>
<td>920</td>
<td>1891</td>
</tr>
<tr>
<td>HLA 65</td>
<td>2” 645</td>
<td>1110</td>
<td>2145</td>
</tr>
<tr>
<td>HLA 100</td>
<td>2” 3” 880</td>
<td>1515</td>
<td>2631</td>
</tr>
<tr>
<td>HLA 140</td>
<td>2” 3” 1280</td>
<td>2200</td>
<td>2797</td>
</tr>
<tr>
<td>HLA 170</td>
<td>2” 3” 1630</td>
<td>2800</td>
<td>2813</td>
</tr>
</tbody>
</table>

* How It Works: Pressure Swing Adsorption

Pressure swing adsorption (PSA) is a widely used technology for air and gas purification. It is a regeneration process, accomplished by reducing pressure. At moderate pressures such as 100 pounds per square inch, an adsorbent can support a certain amount of moisture. When that pressure is reduced to ambient air pressure, the adsorbent can support only a smaller amount of moisture. By alternating (swinging) the pressure from high to low between two adsorbent-filled vessels, you can adsorb large quantities of moisture at higher pressure in the online vessel, and then release that trapped moisture at lower pressure in the offline vessel, thoroughly drying the air.

Universal 110/240V power supply.
✓ Low power requirement

Options

✓ Class 300# fittings
✓ Stainless steel tubing and fittings
✓ Low dew point option (-100 °F/-70 °C LDP)
✓ AutoDew energy saver
✓ Rockwell (Allen Bradley) PLC
✓ 200 PSIG design pressure
✓ 3-valve bypass
✓ 9-valve bypass

Warranties

✓ Two- (2-) year warranty on dryers
✓ Five- (5-) year warranty on all switching valves

Xebec’s filters are best-in-class, ISO/CRN certified

Xebec’s filters are best-in-class, ISO/CRN certified
Advantages:
- ✓ Heat-regenerated 8-hour NEMA cycle
- ✓ Less air consumption
- ✓ 8% average purge loss
- ✓ AutoDew energy saver
- ✓ 3-valve bypass

Design Pressure
150 psig
10.3 barg

Volume Flow Range
500 - 4500 scfm
860 - 7750 m³/h

Operating Temps
50 - 120 °F
10 - 50 °C

Pipe/Port Size
2" NPT
3" - 6" FLG

Standard Dew Point
-40 °F
-40 °C

Higher flows, pressures and port sizes are available upon request.

Principle of Operation
At normal operating temperature in the online tower, water vapor adheres to the desiccant so that only dry air leaves the outlet. An electric heater then raises the desiccant temperature in the offline tower, which releases the adsorbed water vapor. The desiccant must be cooled before switching back online.

Dried air is used for both heating and cooling. The process is called "Temperature Swing Adsorption" (TSA) because drying and regeneration rely upon swinging between two temperature-based adsorption equilibrium conditions, characterized by long cycles measured in hours.

Features & Benefits
- Fully assembled, packaged unit comes complete with desiccant.
- ✓ Ready for operation
- ✓ Maximum removal of moisture and lowest dew point assured during the adsorption process
- ✓ Controlled repressurization
- ✓ A moisture indicator is provided.
- ✓ Continuous visual color indication or display
- ✓ All functions are performed automatically by a PLC.
- ✓ TSA operates on a fixed 8-hour cycle
- Optimized activated alumina desiccant.
- ✓ Very high surface/volume ratio provides maximum adsorption
- ✓ Coalescing pre-filter and particulate after-filter with DPIs and drains, mounted and pre-piped on some models, supplied loose on others.
- ✓ Xebec’s filters are best-in-class, ISO/CRN certified

Options
- ✓ Stainless steel tubing and fittings
- ✓ Low dew point option
- ✓ Rockwell (Allen Bradley) PLC
- ✓ 9-valve bypass

Warranties
- ✓ Two- (2-) year warranty on dryers
- ✓ Five- (5-) year warranty on all switching valves

Features & Benefits
- Optimized activated alumina desiccant.
- ✓ Very high surface/volume ratio provides maximum adsorption
- ✓ Coalescing pre-filter and particulate after-filter with DPIs and drains, mounted and pre-piped on some models, supplied loose on others.
- ✓ Xebec’s filters are best-in-class, ISO/CRN certified

Options
- ✓ Stainless steel tubing and fittings
- ✓ Low dew point option
- ✓ Rockwell (Allen Bradley) PLC
- ✓ 9-valve bypass

Warranties
- ✓ Two- (2-) year warranty on dryers
- ✓ Five- (5-) year warranty on all switching valves
Advantages:

✓ Very efficient at higher flows
✓ 3% average purge loss
✓ AutoDew energy saver
✓ 3-valve bypass

Principle of Operation

At normal operating temperature in the online tower, water vapor adheres to the desiccant so that only dry air leaves the outlet. A blower pushes fresh air through an electric heater to raise the temperature in the offline tower to release the adsorbed water vapor. Ambient, then dried air, is drawn through the desiccant before switching back online.

Features & Benefits

- Fully assembled, packaged unit comes complete with desiccant.
- Ready for operation
- Regeneration purge flow is counter-current to the direction of air flow during drying.
- Maximum removal of moisture and lowest dew point assured during the adsorption process.
- Prevents line surges and minimizes desiccant attrition.
- Controlled repressurization
- Compressed air continues to flow through during power and/or pilot air failure.
- Fail-safe design
- Continuous visual color indication or display
- All functions are performed automatically by a PLC.
- TSA operates on a fixed 8-hour cycle
- Optimized activated alumina desiccant.
- Very high surface/volume ratio provides maximum adsorption
- Coalescing pre-filter and particulate after-filter with DPIs and drains, mounted and pre-piped on some models, supplied loose on others.
- Xebec’s filters are best-in-class, ISO/CRN certified

Options

- Stainless steel tubing and fittings
- Low dew point option (-100 °F/-70 °C PDP)
- Rockwell (Allen Bradley) PLC
- 9-valve bypass

Warranties

- Two- (2-) year warranty on dryers
- Five- (5-) year warranty on all switching valves

Model	**Pipe Size**	**Inlet Flow at 7 Barg and 38 °C (100 PSIG and 100 °F)**	**Dimensions**	**Weight**
BPA1200 | 3" Flg | 1200 3270 | 3251 128 2070 115 | 156 77 77 2573 5800
BPA1600 | 3" Flg | 1600 3760 | 3251 128 2070 115 | 1956 77 77 3061 6900
BPA1900 | 4" Flg | 1900 3370 | 3048 120 2134 84 | 1956 77 77 3461 7800
BPA2200 | 4" Flg | 2200 3760 | 3048 120 2134 84 | 1956 77 77 3727 8400
BPA2700 | 4" Flg | 2700 4650 | 3333 132 2134 84 | 1956 77 77 4215 9500
BPA3700 | 5" Flg | 3700 6370 | 3607 142 2489 98 | 2184 86 5812 13100
BPA4300 | 6" Flg | 4300 7410 | 3988 157 2489 98 | 2184 86 7232 16300
BP5600 | 6" Flg | 5600 9650 | 4064 160 3048 120 | 2464 97 8563 19300
BPA7000 | 8" Flg | 7000 12060 | 4064 160 3607 142 | 2540 100 11446 25800
BPA8700 | 8" Flg | 8700 14990 | 4318 170 3607 142 | 2794 110 14641 33000

Temperature Correction

<table>
<thead>
<tr>
<th>Temperature Correction</th>
<th>Temperature</th>
<th>80</th>
<th>100</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>80</td>
<td>25</td>
<td>38</td>
<td>50</td>
</tr>
<tr>
<td>Multiply Flow by</td>
<td>1.10</td>
<td>1.00</td>
<td>0.86</td>
<td></td>
</tr>
</tbody>
</table>

Pressure Correction

<table>
<thead>
<tr>
<th>Pressures</th>
<th>80</th>
<th>100</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>Barg</td>
<td>5.5</td>
<td>7</td>
</tr>
<tr>
<td>Multiply Flow By</td>
<td>0.92</td>
<td>1.00</td>
<td>1.26</td>
</tr>
</tbody>
</table>

Photo for illustrative purposes only

Dimensions and weights are for reference only

Model Pipe Size

- **BPA1200**: 3" Flg
- **BPA1600**: 3" Flg
- **BPA1900**: 4" Flg
- **BPA2200**: 4" Flg
- **BPA2700**: 4" Flg
- **BPA3700**: 5" Flg
- **BPA4300**: 6" Flg
- **BP5600**: 6" Flg
- **BPA7000**: 8" Flg
- **BPA8700**: 8" Flg

Design Pressure

- 150 psig 10.3 barg

Option

- 200 psig 13.78 barg

Volume Flow Range

- 40 – 1630 scfm
- 69 – 2800 m³/h

Operating Temp

- 50 – 120 °F
- 10 – 50 °C

Pipe/Port Size

- ½" – 2" NPT
- 3" Flg

Standard Dew Point

- -40 °F
- -40 °C

Dew point option

- -100 °F
- -70 °C

Temperature Correction

- Operating Temperature
 - 80
 - 100
 - 120
- Multiply Flow by
 - 1.10
 - 1.00
 - 0.86

Pressure Correction

- Pressure
 - Barg
- Multiply Flow by
 - 0.92
 - 1.00
 - 1.26
Advantages:
- Most economical at higher flows
- The highest quality with the lowest running cost
- Longer life and steady dew point
- Zero purge loss!
- AutoDew energy saver
- 3-valve bypass

Principle of Operation
With vacuum heat regeneration technology, ambient air is drawn through the bed, creating a partial vacuum inside the tower. The pressure difference appears small compared to a conventional blower purge dryer, but it is enough that the desiccant absorbs very little moisture during cooling. The VRA dryer design has zero purge loss because it does not use any compressor capacity for regeneration heating or cooling.

Features & Benefits
- Fully assembled, packaged unit comes complete with desiccant.
- Ready for operation
- Regeneration purge flow is counter-current to the direction of air flow during drying.
- Maximum removal of moisture and lowest dew point assured during the adsorption process.
- Prevents line surges and minimizes desiccant attrition.
- Controlled pressurization

Options
- Stainless steel tubing and fittings
- Low dew point option (-100 °F/-70 °C PDP)
- Rockwell (Allen Bradley) PLC
- 9-valve bypass

Warranties
- Two- (2-) year warranty on dryers
- Five- (5-) year warranty on all switching valves

Reductions in Greenhouse Gas (GHG) Emissions
Climate change has become a major issue for our planet, with GHG emissions being a significant contributor. For industry, the carbon footprint, measured as tons of carbon dioxide equivalent (CO₂e), is the term used to quantify and represent the total amount of GHG produced as a result of commercial or industrial activities.

By choosing energy-efficient dryer products, companies can considerably impact GHG emissions. In the United States, electricity companies produce an average of 1.38 lbs of GHG emissions per kWh produced. A 1500 SCFM heatless dryer will indirectly generate 1.38 lbs of CO₂e per year, resulting in a net reduction of 88 tons. That's significant! Businesses that adopt energy-conscious practices today are building a more successful future for themselves, and a healthy, sustainable future for the world.

TWIN TOWERS

VACUUM REGENERATIVE AIR DRYER - VRA

Design
- **Pressure:** 150 psig
- **Volume Flow Range:** 400 – 6700 scfm
- **Operating Temperatures:** 50 – 120 °F
- **Pipe/Port Size:** 2” NPT
- **Standard Dew Point:** -40°F
- **Auto Dew Control band:** Energy saver

Advantages:
- Most economical at higher flows
- The highest quality with the lowest running cost
- Longer life and steady dew point
- Zero purge loss!
- AutoDew energy saver
- 3-valve bypass

Model and Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>Pipe Size</th>
<th>Dimensions (in)</th>
<th>Weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRA 400</td>
<td>2” NPT</td>
<td>400</td>
<td>1100</td>
</tr>
<tr>
<td>VRA 550</td>
<td>2” NPT</td>
<td>550</td>
<td>1550</td>
</tr>
<tr>
<td>VRA 600</td>
<td>3” Flg</td>
<td>600</td>
<td>1900</td>
</tr>
<tr>
<td>VRA 1100</td>
<td>3” Flg</td>
<td>1600</td>
<td>3000</td>
</tr>
<tr>
<td>VRA 1600</td>
<td>4” Flg</td>
<td>1900</td>
<td>3300</td>
</tr>
<tr>
<td>VRA 2300</td>
<td>6” Flg</td>
<td>2300</td>
<td>4000</td>
</tr>
<tr>
<td>VRA 2900</td>
<td>6” Flg</td>
<td>2900</td>
<td>4900</td>
</tr>
<tr>
<td>VRA 3700</td>
<td>6” Flg</td>
<td>3700</td>
<td>5700</td>
</tr>
<tr>
<td>VRA 4300</td>
<td>6” Flg</td>
<td>4300</td>
<td>7000</td>
</tr>
<tr>
<td>VRA 5000</td>
<td>6” Flg</td>
<td>5000</td>
<td>8100</td>
</tr>
<tr>
<td>VRA 5700</td>
<td>8” Flg</td>
<td>5700</td>
<td>11600</td>
</tr>
<tr>
<td>VRA 6700</td>
<td>8” Flg</td>
<td>6700</td>
<td>14600</td>
</tr>
</tbody>
</table>

Temperature Correction

<table>
<thead>
<tr>
<th>Model</th>
<th>Pipe Size</th>
<th>Operating Temp</th>
<th>Pressure</th>
<th>Pressure Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRA 1100</td>
<td>3” Flg</td>
<td>100 psig</td>
<td>100</td>
<td>1.00</td>
</tr>
<tr>
<td>VRA 1600</td>
<td>4” Flg</td>
<td>100</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>VRA 2300</td>
<td>6” Flg</td>
<td>100</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>VRA 2900</td>
<td>6” Flg</td>
<td>100</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>VRA 3700</td>
<td>6” Flg</td>
<td>100</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>VRA 4300</td>
<td>6” Flg</td>
<td>100</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>VRA 5000</td>
<td>6” Flg</td>
<td>100</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>VRA 5700</td>
<td>8” Flg</td>
<td>100</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>VRA 6700</td>
<td>8” Flg</td>
<td>100</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

Coating weight:

<table>
<thead>
<tr>
<th>Model</th>
<th>Pipe Size</th>
<th>Coating Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRA 400</td>
<td>2” NPT</td>
<td>150 g</td>
</tr>
<tr>
<td>VRA 550</td>
<td>2” NPT</td>
<td>150 g</td>
</tr>
<tr>
<td>VRA 600</td>
<td>3” Flg</td>
<td>300 g</td>
</tr>
<tr>
<td>VRA 1100</td>
<td>3” Flg</td>
<td>300 g</td>
</tr>
<tr>
<td>VRA 1600</td>
<td>4” Flg</td>
<td>300 g</td>
</tr>
<tr>
<td>VRA 2300</td>
<td>6” Flg</td>
<td>300 g</td>
</tr>
<tr>
<td>VRA 2900</td>
<td>6” Flg</td>
<td>300 g</td>
</tr>
<tr>
<td>VRA 3700</td>
<td>6” Flg</td>
<td>300 g</td>
</tr>
<tr>
<td>VRA 4300</td>
<td>6” Flg</td>
<td>300 g</td>
</tr>
<tr>
<td>VRA 5000</td>
<td>6” Flg</td>
<td>300 g</td>
</tr>
<tr>
<td>VRA 5700</td>
<td>8” Flg</td>
<td>300 g</td>
</tr>
<tr>
<td>VRA 6700</td>
<td>8” Flg</td>
<td>300 g</td>
</tr>
</tbody>
</table>

Photo for illustrative purposes only
OPTIONS

VALVE BYPASS
The 3-valve and 9-valve bypass options provide a quick and safe way to take the dryer in or out of operation in a fraction of a second without shutting down the entire air system.

LOW PRESSURE DEW POINT (LPD)
Many industrial applications require extremely low pressure dew points. Xebec dryers with the LPD option are designed to provide a consistent -100 °F/-70 °C pressure dew point for these critical applications.

STAINLESS STEEL TUBING
Standard Xebec dryers use nylon tubing for the pilot air assembly. For customers using stainless steel as standard material for tubing systems, Xebec offers the option of replacing the nylon tubing with stainless steel tubing.

CLASS 3000# FITTINGS
Threaded Class 3000# fittings for connections ≤ 2" are used in all Xebec standard heated dryers (HRA, BPA and VPA series). For heatless dryers (HLA series), threaded Class 150# fittings are the standard for connections ≤ 2". Some industrial sectors have adopted stricter standards for pressure piping systems. For the latter types of applications, Xebec can incorporate threaded Class 3000# fittings in the HLA series dryer.

ROCKWELL (ALLEN BRADLEY) PLC
Many industrial facilities use Rockwell (Allen Bradley) PLCs as standard equipment. For these customers, Xebec dryers can be equipped with this kind of PLC to facilitate the connectivity and simplicity of the control system configuration.

AutoDew Energy Savings
Available for all Models
In a fixed-cycle dryer, one tower is always undergoing regeneration, regardless of the load on the compressed air system. The Xebec AutoDew option reduces energy usage by delaying the start of the regeneration cycle until the online tower is fully saturated.

The dew point at the dryer outlet is monitored with a precision hygrometer which senses when the online tower can no longer maintain dew point. When compressed air demand is low, the dryer uses correspondingly less energy.

WITH AUTODEW, ONE TOWER IS ALWAYS REGENERATING, EVEN AT PARTIAL DEMAND

LEFT TOWER: DRYING, REGENERATING, DRYING, REGENERATING
RIGHT TOWER: REGENERATING, DRYING, REGENERATING, DRYING

WITHOUT AUTODEW, THE REGENERATED TOWER STANDS BY UNTIL THE ONLINE TOWER IS FULLY SATURATED

LEFT TOWER: DRYING, REGENERATING, STANDBY, DRYING
RIGHT TOWER: REGENERATING, STANDBY, STANDBY, DRYING

DISCOVER OUR FILTERS, SERVICE AND PARTS
PAGE 38
Designed and built for strength, durability and reliability, Xepec’s Cycling Refrigerated Compressed Air Dryer (RAD) and Refrigerated High-Temperature Compressed Air Dryer (RADH) offer a host of innovative design features focused on performance, energy efficiency and quick maintenance.
Advantages and Features at a Glance

- Energy-saving controller
- Insulated, 3-in-1 heat exchanger aluminum plate
- High-efficiency compressor
- Environmentally friendly R-134a refrigerant
- Built-in 1-micron pre- and 0.101-micron after-filter - up to RAD 1100
- Fan cycle switch
- Refrigerant pressure gauges standard on 175 cfm and larger units
- Consistent dew point performance
- Low power consumption
- Low pressure drop
- Every dryer has a 2-year limited warranty
- High-quality fan motors
- Oversized condenser
- Victaulic couplings and fittings
- Built-in water separator, applicable to RADH only

Energy-Saving Controller Lowers Operating Costs

The Cycling Refrigerated Compressed Air Dryer comes equipped with Digi-Pro, a state-of-the-art digital controller or energy-saving device (ESD) with money-saving features and alarm capabilities to help service technicians monitor many useful parameters and readings.

Digi-Pro

- One-finger touch key for ease and accessibility
- Digital dew point monitoring
- Display with energy-saving mode
- Periodic maintenance interval display; status report
- Hours run meter
- Fahrenheit and centigrade selection

The Digi-Pro user interface consists of a larger-than-average custom display, with decimal point and function icons, and four touch keys.
R-134a Refrigerant Gas

Key to the design of the Cycling Refrigerated Compressed Air Dryer is its use of environmentally friendly R134a refrigerant gas, making it suitable for low- and high-temperature applications while retaining excellent thermodynamic properties.

- Does not deplete the ozone layer
- Thermodynamic properties similar to R-12 (dichlorodifluoromethane)
- 100% chlorine-free
- Completely inert
- Operates at nearly half the pressure of other refrigerants so compressor life span is increased
- R-134a makes the refrigerant dryer much more tolerant to adverse conditions such as high ambient temperature

Aluminum Plate Heat Exchanger

The Cycling Refrigerated Compressed Air Dryer is equipped with a compact monobloc heat exchanger module, specially designed to dry compressed air.

- Very low pressure drop
- Centrifugal condensate separator for high-efficiency condensate removal requires no maintenance
- Rust-free for long service life

Streamlined Wiring and Electrical Protection

Quick and easy access to the dryer internals is a key design feature. The RAD 550 and larger dryers include a unique electrical box which can be accessed from the outside via an access panel. This makes it easy to reach the controls for installation, setup and service. All our dryers are rated to IP54 standard, which means the electrical controls are protected from dust and water spray from any direction.

Scroll Compressors

Selected for their resistance to liquid shock and high energy efficiency, scroll compressors are used in our larger models (RAD 550 & above) – ideal because they are compact, quiet and low-maintenance.
Built-In Quick-Change Filters and Compact Design*

Using feedback from field engineers and service technicians, our design engineers created an industry first: the unique “quick-change” filter system, suitable for smaller installation spaces.

Two integrated filter housings - a huge advantage in space efficiency and service ease

Service-friendly, low-clearance design allows for maintenance in minutes

Labour and piping costs are greatly reduced during installation and compact design allows for flexibility in placement and increased economy during transport

Tie-rod-free, quick-change design allows replacement elements to be easily inserted and resealed in a fraction of the time of a traditional system

Victaulic Grooved Couplings and Fittings

These offer increased connection flexibility and durability, allowing service technicians to dismantle and assemble piping efficiently.

Condensate Drains on Filters

The drain tube can easily be connected to a central condensate drain tubing network or point of disposal, eliminating the need for traditional extensive drain lines and time-consuming installation.

Correction Factors

<table>
<thead>
<tr>
<th>Pressure Bar</th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>psi</td>
<td>bar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>4</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>6</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>8</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>10</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>12</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>14</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>16</td>
<td>1.25</td>
<td></td>
</tr>
</tbody>
</table>

Inlet Temperature

<table>
<thead>
<tr>
<th>°F</th>
<th>°C</th>
<th>Factor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>86</td>
<td>30</td>
<td>1.36</td>
</tr>
<tr>
<td>95</td>
<td>35</td>
<td>1.05</td>
</tr>
<tr>
<td>100</td>
<td>37.8</td>
<td>1.00</td>
</tr>
<tr>
<td>104</td>
<td>40</td>
<td>0.97</td>
</tr>
<tr>
<td>113</td>
<td>45</td>
<td>0.82</td>
</tr>
<tr>
<td>122</td>
<td>50</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Ambient Temperature

<table>
<thead>
<tr>
<th>°F</th>
<th>°C</th>
<th>Factor 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>20</td>
<td>1.20</td>
</tr>
<tr>
<td>77</td>
<td>25</td>
<td>1.14</td>
</tr>
<tr>
<td>86</td>
<td>30</td>
<td>1.12</td>
</tr>
<tr>
<td>95</td>
<td>35</td>
<td>1.06</td>
</tr>
<tr>
<td>100</td>
<td>37.8</td>
<td>1.0</td>
</tr>
<tr>
<td>104</td>
<td>40</td>
<td>0.96</td>
</tr>
</tbody>
</table>

EXAMPLE

Air compressor specifications
- Compressor Capacity: 275 scfm
- Max Operating Pressure: 87 psi (6 bar)
- Inlet Temperature: 104°F
- Ambient Temperature: 86°F
- Quality Class 4 air required

Plug the correct values into the FORMULA below using your current compressor specifications and the correct FACTORS from the charts above. Use the New Capacity and round up to next size dryer. Refer to the chart on the previous page to determine the correct dryer model.

FORMULA

\[
\text{Compressor Capacity} \times \text{Factor 1} \times \text{Factor 2} \times \text{Factor 3} = \text{New Capacity}
\]

Example

\[
275 \times 0.94 \times 0.97 \times 1.12 = 269 \text{ scfm}
\]

The correct model would be the RAD 375.

* For models up to the RAD1100
Technical Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>Nominal Pressure</th>
<th>Maximum Operating Pressure</th>
<th>Maximum Ambient Temperature</th>
<th>Minimum Ambient Temperature</th>
<th>Refrigerant Gas</th>
<th>Nominal Inlet Pressure</th>
<th>Nominal Ambient Temperature</th>
<th>Nominal Inlet Air Temperature</th>
<th>Refrigerant Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAD-10</td>
<td>100 psi (7 bar)</td>
<td>232 psi (16 bar)</td>
<td>113°F (45°C)</td>
<td>39°F (4°C)</td>
<td>R134a</td>
<td>100 psi (7 bar)</td>
<td>100°F / 37.8°C</td>
<td>100°F / 37.8°C</td>
<td>R134a</td>
</tr>
</tbody>
</table>

Model Technical Details

<table>
<thead>
<tr>
<th>Model</th>
<th>Capacity*</th>
<th>Outlet PDP ≤ +3°C / 37.4°F (ISO8573.1 Class 4)</th>
<th>Capacity*</th>
<th>Outlet PDP ≤ +7°C / 44.6°F (ISO8573.1 Class 5)</th>
<th>Connection</th>
<th>Electrical Supply</th>
<th>Power (kw)</th>
<th>Pressure Drop</th>
<th>Dimensions</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAD-10</td>
<td>9</td>
<td>17</td>
<td>11</td>
<td>19</td>
<td>½" NPT</td>
<td>115/160</td>
<td>0.4</td>
<td>2.2</td>
<td>150</td>
<td>17</td>
</tr>
<tr>
<td>RAD-15</td>
<td>15</td>
<td>28</td>
<td>18</td>
<td>32</td>
<td>½" NPT</td>
<td>115/161</td>
<td>0.5</td>
<td>3.2</td>
<td>220</td>
<td>17</td>
</tr>
<tr>
<td>RAD-20</td>
<td>21</td>
<td>38</td>
<td>24</td>
<td>44</td>
<td>½" NPT</td>
<td>115/162</td>
<td>0.5</td>
<td>5.1</td>
<td>350</td>
<td>17</td>
</tr>
<tr>
<td>RAD-40</td>
<td>40</td>
<td>73</td>
<td>46</td>
<td>83</td>
<td>¾" NPT</td>
<td>115/163</td>
<td>0.5</td>
<td>1.5</td>
<td>100</td>
<td>19</td>
</tr>
<tr>
<td>RAD-60</td>
<td>62</td>
<td>112</td>
<td>71</td>
<td>129</td>
<td>¾" NPT</td>
<td>115/164</td>
<td>1.1</td>
<td>3.2</td>
<td>220</td>
<td>19</td>
</tr>
<tr>
<td>RAD-75</td>
<td>76</td>
<td>138</td>
<td>88</td>
<td>158</td>
<td>¾" NPT</td>
<td>115/165</td>
<td>1.2</td>
<td>4.6</td>
<td>320</td>
<td>19</td>
</tr>
<tr>
<td>RAD-85</td>
<td>84</td>
<td>152</td>
<td>97</td>
<td>175</td>
<td>¼" NPT</td>
<td>115/166</td>
<td>1.4</td>
<td>3.2</td>
<td>220</td>
<td>22</td>
</tr>
<tr>
<td>RAD-125</td>
<td>122</td>
<td>221</td>
<td>140</td>
<td>254</td>
<td>¼" NPT</td>
<td>115/167</td>
<td>1.7</td>
<td>4.6</td>
<td>320</td>
<td>22</td>
</tr>
<tr>
<td>RAD-150</td>
<td>150</td>
<td>272</td>
<td>173</td>
<td>313</td>
<td>¼" NPT</td>
<td>115/168</td>
<td>1.9</td>
<td>2.9</td>
<td>200</td>
<td>22</td>
</tr>
<tr>
<td>RAD-200</td>
<td>198</td>
<td>359</td>
<td>228</td>
<td>413</td>
<td>2" NPT</td>
<td>135/169</td>
<td>2.2</td>
<td>4.5</td>
<td>310</td>
<td>27</td>
</tr>
<tr>
<td>RAD-250</td>
<td>250</td>
<td>452</td>
<td>287</td>
<td>520</td>
<td>2" NPT</td>
<td>135/170</td>
<td>2.7</td>
<td>3.5</td>
<td>240</td>
<td>29</td>
</tr>
<tr>
<td>RAD-375</td>
<td>372</td>
<td>674</td>
<td>428</td>
<td>776</td>
<td>2" NPT</td>
<td>135/171</td>
<td>3.0</td>
<td>2.2</td>
<td>150</td>
<td>37</td>
</tr>
<tr>
<td>RAD-480</td>
<td>481</td>
<td>870</td>
<td>553</td>
<td>1001</td>
<td>2" NPT</td>
<td>135/172</td>
<td>3.6</td>
<td>2.8</td>
<td>190</td>
<td>37</td>
</tr>
<tr>
<td>RAD-550</td>
<td>556</td>
<td>1007</td>
<td>639</td>
<td>1158</td>
<td>3" NPT</td>
<td>155/173</td>
<td>3.7</td>
<td>5.1</td>
<td>350</td>
<td>37</td>
</tr>
<tr>
<td>RAD-725</td>
<td>721</td>
<td>1305</td>
<td>829</td>
<td>1501</td>
<td>3" NPT</td>
<td>155/174</td>
<td>3.7</td>
<td>4.2</td>
<td>290</td>
<td>37</td>
</tr>
<tr>
<td>RAD-1000</td>
<td>1001</td>
<td>1813</td>
<td>1151</td>
<td>2085</td>
<td>3" NPT</td>
<td>155/175</td>
<td>4.6</td>
<td>2.8</td>
<td>190</td>
<td>46</td>
</tr>
<tr>
<td>RAD-1100</td>
<td>1111</td>
<td>2072</td>
<td>1278</td>
<td>2314</td>
<td>3" NPT</td>
<td>155/176</td>
<td>4.6</td>
<td>2.8</td>
<td>190</td>
<td>46</td>
</tr>
<tr>
<td>RAD-1350</td>
<td>1342</td>
<td>2429</td>
<td>1543</td>
<td>2794</td>
<td>4" FLG</td>
<td>155/177</td>
<td>3.6</td>
<td>3.9</td>
<td>270</td>
<td>55</td>
</tr>
<tr>
<td>RAD-1550</td>
<td>1568</td>
<td>2839</td>
<td>1803</td>
<td>3285</td>
<td>4" FLG</td>
<td>155/178</td>
<td>3.6</td>
<td>5.5</td>
<td>380</td>
<td>55</td>
</tr>
<tr>
<td>RAD-2050</td>
<td>2037</td>
<td>3688</td>
<td>2342</td>
<td>4241</td>
<td>4" FLG</td>
<td>155/179</td>
<td>5.4</td>
<td>4.6</td>
<td>320</td>
<td>58</td>
</tr>
<tr>
<td>RAD-2350</td>
<td>2343</td>
<td>4242</td>
<td>2694</td>
<td>4879</td>
<td>4" FLG</td>
<td>155/180</td>
<td>5.1</td>
<td>4.6</td>
<td>320</td>
<td>58</td>
</tr>
<tr>
<td>RAD-2800</td>
<td>2794</td>
<td>5058</td>
<td>3213</td>
<td>5817</td>
<td>6" FLG</td>
<td>155/181</td>
<td>5.1</td>
<td>4.6</td>
<td>320</td>
<td>86</td>
</tr>
<tr>
<td>RAD-3150</td>
<td>3154</td>
<td>5711</td>
<td>3627</td>
<td>6567</td>
<td>6" FLG</td>
<td>155/182</td>
<td>6.4</td>
<td>5.1</td>
<td>350</td>
<td>86</td>
</tr>
<tr>
<td>RAD-3600</td>
<td>3605</td>
<td>6527</td>
<td>4145</td>
<td>7506</td>
<td>6" FLG</td>
<td>155/183</td>
<td>7.6</td>
<td>5.1</td>
<td>350</td>
<td>106</td>
</tr>
<tr>
<td>RAD-4200</td>
<td>4205</td>
<td>7614</td>
<td>4836</td>
<td>8756</td>
<td>8" FLG</td>
<td>155/184</td>
<td>7.6</td>
<td>5.1</td>
<td>350</td>
<td>106</td>
</tr>
<tr>
<td>RAD-5000</td>
<td>5005</td>
<td>9065</td>
<td>5757</td>
<td>10424</td>
<td>8" FLG</td>
<td>155/185</td>
<td>10.1</td>
<td>5.1</td>
<td>350</td>
<td>100</td>
</tr>
</tbody>
</table>

*Nominal Pressure: 100 psi (7 bar) *Maximum Operating Pressure: 232 psi (16 bar) *Maximum Ambient Temperature: 113°F (45°C) *Minimum Ambient Temperature: 39°F (4°C) *Refrigerant Gas: R134a
High-Temperature Air Dryers

Many small compressors do not use an aftercooler in their designs. Therefore, compressed air exits the compressor at a temperature of about 240°F. These High-Temperature Dryers incorporate an aftercooler to reduce the inlet temperature, providing efficient dew point management. High-Temperature Air Dryers also have a built-in water separator.

TECHNICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RADH-25</td>
<td>25</td>
<td>115/1/60 ¾"</td>
<td>17.5 17.5 37.6</td>
<td>230</td>
<td>120</td>
<td>240</td>
</tr>
<tr>
<td>RADH-50</td>
<td>50</td>
<td>115/1/60 ¾"</td>
<td>20 24.6 35.8</td>
<td>230</td>
<td>120</td>
<td>240</td>
</tr>
<tr>
<td>RADH-75</td>
<td>75</td>
<td>115/1/60 ¾"</td>
<td>20 24.6 35.8</td>
<td>230</td>
<td>120</td>
<td>240</td>
</tr>
<tr>
<td>RADH-100</td>
<td>100</td>
<td>115/1/60 ¾"</td>
<td>20 24.6 35.8</td>
<td>230</td>
<td>120</td>
<td>240</td>
</tr>
</tbody>
</table>

CORRECTION FACTORS

<table>
<thead>
<tr>
<th>Inlet Temperature (°F)</th>
<th>39</th>
<th>50</th>
<th>61</th>
<th>70</th>
<th>79</th>
<th>90</th>
<th>100</th>
<th>140</th>
<th>180</th>
<th>199</th>
<th>208</th>
<th>219</th>
<th>240</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.35</td>
<td>1.3</td>
<td>1.27</td>
<td>1.06</td>
<td>1</td>
<td>0.85</td>
<td>0.78</td>
<td>0.75</td>
<td>0.7</td>
</tr>
<tr>
<td>Ambient Temperature (°F)</td>
<td>39</td>
<td>50</td>
<td>61</td>
<td>75</td>
<td>84</td>
<td>95</td>
<td>100</td>
<td>104</td>
<td>115</td>
<td>120</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F2</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.07</td>
<td>1.03</td>
<td>1</td>
<td>0.96</td>
<td>0.82</td>
<td>0.55</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pressure (PSI)</td>
<td>60</td>
<td>73</td>
<td>87</td>
<td>102</td>
<td>115</td>
<td>123</td>
<td>145</td>
<td>160</td>
<td>175</td>
<td>189</td>
<td>203</td>
<td>230</td>
<td>-</td>
</tr>
<tr>
<td>F3</td>
<td>0.7</td>
<td>0.75</td>
<td>0.8</td>
<td>0.83</td>
<td>0.88</td>
<td>0.9</td>
<td>0.93</td>
<td>0.96</td>
<td>1</td>
<td>1.1</td>
<td>1.12</td>
<td>1.15</td>
<td>-</td>
</tr>
</tbody>
</table>

CORRECTION EXAMPLE:

If an air compressor delivers 50 scfm at 145 psi, the dryer inlet temperature is 180°F and ambient temperature is 119°F. Please choose your dryer model as follows: 50 x 1.35 = 68 scfm. Dryer model for this application is RADH-75.
Compressed air systems are critical components in automotive, food & beverage, electronics, pharmaceutical and many other general industrial-use applications thanks to ever-increasing demands for cleaner, oil-free and dry compressed air. As an important source of energy, not only does air need to be clean and contaminant-free, it also needs to be super-dry to maximize overall system efficiency. Any form of water or oil vapour can cause costly downtime, machine damage and product spoilage.

MODULAR DESICCANT AIR DRYERS

Compressed air systems are critical components in automotive, food & beverage, electronics, pharmaceutical and many other general industrial-use applications thanks to ever-increasing demands for cleaner, oil-free and dry compressed air. As an important source of energy, not only does air need to be clean and contaminant-free, it also needs to be super-dry to maximize overall system efficiency. Any form of water or oil vapour can cause costly downtime, machine damage and product spoilage.
Taking compressed air treatment to the next level through advanced technology, Xebec’s industrial modular air dryers combine proven, reliable dryer principles with unsurpassed flexibility, affordable space-saving design, and operational safety and efficiency.

Advantages of a Modular System

UNSURPASSED FLEXIBILITY

- Designed for any space challenge. Lightweight, the Modular Desiccant Air Dryer is less than half the weight and size of a traditional twin-tower design. Even the largest model can easily fit through a doorway.

- Designed for a range of flows. From 3 to 213 scfm (4 to 343 Nm³/h) with dew points of -40°F / -40°C (-100°F / -70°C optional), these dryers are fully equipped, requiring only air inlet/outlet connections.

- Designed for most installation options. Wall, bench, or floor mount.

AFFORDABLE SPACE-SAVING DESIGN

- Small footprint. The compact Modular Desiccant Air Dryer comes fully equipped with a power cable and mounting brackets for wall, ground or bench installation.

- Quality, lightweight aluminum construction. For corrosion resistance.

- Easy to install and easy to use. Plug and go, you only need to attach the supplied pre- and after-filters. The simple digital display tells you what you need to know.

- Hassle-free maintenance. Easy access for desiccant change-out and servicing.

EFFICIENT, RELIABLE, SAFE OPERATION

- Efficient. Using a highly engineered inlet and purge manifold design, the Modular Desiccant Air Dryer is one of the lowest pressure-drop desiccant dryers in the industry.

- Lower life-cycle costs. Thanks to low energy and simplified maintenance.

- Reliable and durable. Completely automatic, proven electronic controls, high-performance valves, high-quality/high-density-filled desiccant.

- Tested and proven. 100% tested for leaks, operation and performance. Every dryer has a 2-year limited warranty.

- Delivers highest quality compressed air. In accordance with ISO 8573-1, Class 2 (standard) and Class 1 (optional).

WARRANTY

All Xebec dryers are under warranty for two (2) years, except for the following components: electrical, activated alumina, and mufflers.
Technical Specifications

<table>
<thead>
<tr>
<th>Standard Model</th>
<th>Capacity</th>
<th>Connection</th>
<th>Weight</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>scfm</td>
<td>Nm³/h</td>
<td>NPT</td>
<td>Width</td>
</tr>
<tr>
<td>MAD 3</td>
<td>3</td>
<td>4</td>
<td>½" NPT</td>
<td>38</td>
</tr>
<tr>
<td>MAD 5</td>
<td>4</td>
<td>7</td>
<td>½" NPT</td>
<td>42</td>
</tr>
<tr>
<td>MAD 10</td>
<td>9</td>
<td>14</td>
<td>½" NPT</td>
<td>60</td>
</tr>
<tr>
<td>MAD 15</td>
<td>13</td>
<td>21</td>
<td>½" NPT</td>
<td>68</td>
</tr>
<tr>
<td>MAD 20</td>
<td>18</td>
<td>20</td>
<td>½" NPT</td>
<td>93</td>
</tr>
<tr>
<td>MAD 25</td>
<td>22</td>
<td>36</td>
<td>½" NPT</td>
<td>106</td>
</tr>
<tr>
<td>MAD 30</td>
<td>27</td>
<td>43</td>
<td>½" NPT</td>
<td>119</td>
</tr>
<tr>
<td>MAD 40</td>
<td>36</td>
<td>57</td>
<td>1 ½" NPT</td>
<td>157</td>
</tr>
<tr>
<td>MAD 45</td>
<td>44</td>
<td>71</td>
<td>1 ½" NPT</td>
<td>172</td>
</tr>
<tr>
<td>MAD 55</td>
<td>53</td>
<td>86</td>
<td>1 ½" NPT</td>
<td>203</td>
</tr>
<tr>
<td>MAD 70</td>
<td>67</td>
<td>107</td>
<td>1 ½" NPT</td>
<td>265</td>
</tr>
<tr>
<td>MAD 90</td>
<td>89</td>
<td>143</td>
<td>1 ½" NPT</td>
<td>293</td>
</tr>
<tr>
<td>MAD 110</td>
<td>107</td>
<td>172</td>
<td>1 ½" NPT</td>
<td>335</td>
</tr>
<tr>
<td>MAD 160</td>
<td>160</td>
<td>257</td>
<td>1 ½" NPT</td>
<td>410</td>
</tr>
<tr>
<td>MAD 215</td>
<td>213</td>
<td>343</td>
<td>1 ½" NPT</td>
<td>518</td>
</tr>
</tbody>
</table>

Correction Factors

<table>
<thead>
<tr>
<th>Max Operating Pressure</th>
<th>Factor 1</th>
<th>Factor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>psi</td>
<td>bar</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>4.5</td>
<td>0.69</td>
</tr>
<tr>
<td>72</td>
<td>5</td>
<td>0.75</td>
</tr>
<tr>
<td>87</td>
<td>6</td>
<td>0.88</td>
</tr>
<tr>
<td>100</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>116</td>
<td>8</td>
<td>1.12</td>
</tr>
<tr>
<td>130</td>
<td>9</td>
<td>1.25</td>
</tr>
<tr>
<td>145</td>
<td>10</td>
<td>1.37</td>
</tr>
<tr>
<td>160</td>
<td>11</td>
<td>1.5</td>
</tr>
<tr>
<td>174</td>
<td>12</td>
<td>1.62</td>
</tr>
<tr>
<td>188</td>
<td>13</td>
<td>1.74</td>
</tr>
<tr>
<td>203</td>
<td>14</td>
<td>1.87</td>
</tr>
<tr>
<td>218</td>
<td>15</td>
<td>1.99</td>
</tr>
<tr>
<td>232</td>
<td>16</td>
<td>2.11</td>
</tr>
</tbody>
</table>

Inlet Temperature

<table>
<thead>
<tr>
<th>Temperature °F</th>
<th>Factor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>20</td>
</tr>
<tr>
<td>77</td>
<td>25</td>
</tr>
<tr>
<td>86</td>
<td>30</td>
</tr>
<tr>
<td>95</td>
<td>35</td>
</tr>
<tr>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>113</td>
<td>45</td>
</tr>
<tr>
<td>122</td>
<td>50</td>
</tr>
</tbody>
</table>

CHOOSING THE RIGHT DRYER MODEL

EXAMPLE

Air compressor specifications
- Compressor Capacity: 120 scfm
- Max Operating Pressure: 87 psi (6 bar)
- Inlet Temperature: 113 °F

Plug the correct values into the **FORMULA** below using your present compressor specifications and the correct **FACTORS** from the chart above.

Use the **New Capacity** and round up to next size dryer. Refer to the chart on the opposite page to determine the correct dryer model.

FORMULA

\[\frac{\text{Compressor Capacity}}{\text{Factor 1}} \times \text{Factor 2} = \text{New Capacity} \]

- Compressor Capacity = 120 scfm
- Factor 1 = 0.88
- Factor 2 = 0.82
- New Capacity = 166 scfm

The correct model would be the **MAD 215**.

OPTIONS

- **AutoDew Dew Point Monitor**
 - Provides reliable, compact, continuous performance monitoring with alarms, etc.
 - Can be configured for remote control monitoring

- **Xebec’s Pre- & After-Filters**
 - Designed to give you the cleanest, driest air possible

- **Low Dew Point -40°F/-40°C**

REPLACEMENTS AND SPARES

- **Xebec Elements**
 - To continue delivering superior results, elements within the filters should be replaced annually

- **Angle Body Piston Valves**

- **Activated Alumina Desiccant**
 - Ours boasts a high crush strength with a superior surface/volume ratio
Looking for Natural Gas Dryers for refuelling stations?

Industrial Air & Gas Filtration
Xebec provides best-in-class filtration solutions for compressed air and natural gas.
- Practical solutions developed from over 50 years of experience
- Full range of products for one-stop shopping
- Proven quality on a global scale

Service and Parts
We support you for all your equipment needs! Xebec is committed to providing you with top-quality services and a complete range of replacement parts and spares for your compressed air and gas equipment of all makes and models.
- Fully certified technicians on call
- Onsite commissioning
- Preventative maintenance
- Servicing and upgrading
- Replacements and spares for all makes and models

Ask our sales team for our filters brochure or visit our website at xebecinc.com

Ask our sales team or visit xebecinc.com